Physical practice, mental practice or both: a systematic review with meta-analysis
DOI: https://doi.org/10.24310/jpehm.5.2.2023.17875
Introduction: Previous research has reached positive conclusions regarding the effects of mental practice on performance and learning of a motor skill. The purpose of this study was to use the aggregate data meta-analytic approach to assess the impact of physical practice (PP), mental practice (MP), and the combination of both on acquisition, retention, and transfer tests in motor skill performance. Methodology: Twenty-seven studies published up to 2022 were included by searching six databases. Random effects model using the standardized mean difference effect size (ES) was used to pool results. Results: A total of 42 ES, were calculated and separated into pairwise comparisons for acquisition, retention, and transfer phase. In the acquisition phase, it was found that MP was more effective than no practice (ES=0.508; n=25; CI=0.29,0.72), PP was more effective than no practice (ES=1.78; n=15; CI=0.97,2.60), CP was more effective than no practice (ES=1.16; n=12; CI=0.57,1.75), PP was more effective than MP (ES=-1.16; n=23; CI=-1.88,-0.45), PP had similar results as CP (ES=-0.01; n=16; CI=-0.31,0.28), and CP was more effective than MP (ES=0.61; n=12; CI=0.17,1.04). In the retention phase, it was found that MP was more effective than no practice (ES=1.11; n=5; CI=0.44,1.79), PP was more effective than no practice (ES=1.03; n=4; CI=0.08, 1.99), PP was more effective than MP (ES=-1.29; n=9; CI=-3.12,0.54), PP had similar results as CP (ES=0.16; n=8; CI=-0.29,0.63), CP had similar results as MP (ES=-0.06; n=3; CI=-1.22,1.09). In the transfer phase, it was found that MP was more effective than no practice (ES=1.12; n=5; CI=0.01,1.59), PP had similar results as no practice (ES=0.41; n=5; CI=-0.02,0.85), and PP was more effective than MP (ES=0.50; n=6; CI=0.12,0.87). Age, skill level, type of mental practice, total of sessions, and type of skill were considered as possible moderator variables. Conclusions: Mental practice does not replace physical practice, however, under some conditions, physical practice can be complemented with mental practice.
Palabras clave:
Autores:
Referencias
Allami, N., Paulignan, Y., Brovelli, A., & Boussaoud, D. (2008). Visuo-motor learning with combination of different rates of motor imagery and physical practice. Experimental Brain Research, 184(1), Article 1. https://doi.org/10.1007/s00221-007-1086-x
Behrendt, F., Zumbrunnen, V., Brem, L., Suica, Z., Gäumann, S., Ziller, C., Gerth, U., & Schuster-Amft, C. (2021). Effect of motor imagery training on motor learning in children and adolescents: A systematic review and meta-Analysis. International Journal of Environmental Research and Public Health, 18(18), 9467. https://doi.org/10.3390/ijerph18189467
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-analysis. John Wiley & Sons. https://doi.org/10.1002/9780470743386
Borenstein, M., Higgins, J. P. T., Hedges, L. V., & Rothstein, H. R. (2017). Basics of meta-analysis: I 2 is not an absolute measure of heterogeneity: I 2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8(1), Article 1. https://doi.org/10.1002/jrsm.1230
Broniec, A. (2016). Analysis of EEG signal by flicker-noise spectroscopy: Identification of right-/left-hand movement imagination. Medical & Biological Engineering & Computing, 54(12), 1935-1947. https://doi.org/10.1007/s11517-016-1491-z
Debarnot, U., Clerget, E., & Olivier, E. (2011). Role of the primary motor cortex in the early boost in performance following mental imagery training. PLoS ONE, 6(10), Article 10. https://doi.org/10.1371/journal.pone.0026717
Di Nota, P. M., Levkov, G., Bar, R., & DeSouza, J. F. X. (2016). Lateral occipitotemporal cortex (LOTC) activity is greatest while viewing dance compared to visualization and movement: Learning and expertise effects. Experimental Brain Research, 234(7), 2007-2023. https://doi.org/10.1007/s00221-016-4607-7
Doussoulin, A., & Rehbein, L. (2011). Motor imagery as a tool for motor skill training in children. Motricidade, 7(3). https://doi.org/10.6063/motricidade.7(3).131
Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79(4), Article 4. https://doi.org/10.1037/0021-9010.79.4.481
Fairbrother, J. T. (2010). Fundamentals of Motor Behavior. Human Kinetics. https://doi.org/10.5040/9781492597346
Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of sport psychology, 5(1), Article 1. https://doi.org/10.1123/jsp.5.1.25
Freitas, E., Saimpont, A., Blache, Y., & Debarnot, U. (2020). Acquisition and consolidation of sequential footstep movements with physical and motor imagery practice. Scandinavian Journal of Medicine & Science in Sports, 30(12), 2477-2484. SPORTDiscus with Full Text.
Gomes, T. V. B., Ugrinowitsch, H., Marinho, N., Shea, J. B., Raisbeck, L. D., & Benda, R. N. (2014). Effects of mental practice in novice learners in a serial positioning skill acquisition. Perceptual and Motor Skills, 119(2), Article 2. https://doi.org/10.2466/23.PMS.119c20z4
Heena, N., Zia, N. U., Sehgal, S., Anwer, S., Alghadir, A., & Li, H. (2021). Effects of task complexity or rate of motor imagery on motor learning in healthy young adults. Brain & Behavior, 11(11), Article 11. https://doi.org/10.1002/brb3.2122
Hinshaw, K. E. (1991). The effects of mental practice on motor skill performance: Critical evaluation and meta-analysis. Imagintation, cognition and personality, 11(1). https://doi.org/doi.org/10.2190/X9BA-KJ68-07AN-QMJ8
Hird, J. S., Landers, D. M., Thomas, J. R., & Horan, J. J. (1991). Physical practice is superior to mental practice in enhancing cognitive and motor task performance. Journal of Sport and Exercise Psychology, 13(3), Article 3. https://doi.org/10.1123/jsep.13.3.281
Ingram, T. G. J., Kraeutner, S. N., Solomon, J. P., Westwood, D. A., & Boe, S. G. (2016). Skill acquisition via motor imagery relies on both motor and perceptual learning. Behavioral Neuroscience, 130(2), 252-260. https://doi.org/10.1037/bne0000126
Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C. L., & Doyon, J. (2003). Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage, 20(2), Article 2. https://doi.org/10.1016/S1053-8119(03)00369-0
Kawasaki, T., Kono, M., & Tozawa, R. (2019). Efficacy of verbally describing one’s own body movement in motor skill acquisition. Brain Sciences, 9(12), Article 12. https://doi.org/10.3390/brainsci9120356
Kraeutner, S. N., Gionfriddo, A., Bardouille, T., & Boe, S. (2014). Motor imagery-based brain activity parallels that of motor execution: Evidence from magnetic source imaging of cortical oscillations. Brain Research, 1588, 81-91. https://doi.org/10.1016/j.brainres.2014.09.001
Kraeutner, S. N., MacKenzie, L. A., Westwood, D. A., & Boe, S. G. (2016). Characterizing skill acquisition through motor imagery with no prior physical practice. Journal of Experimental Psychology: Human Perception and Performance, 42(2), Article 2. https://doi.org/10.1037/xhp0000148
Lee, W. H., Kim, E., Seo, H. G., Oh, B.-M., Nam, H. S., Kim, Y. J., Lee, H. H., Kang, M.-G., Kim, S., & Bang, M. S. (2019). Target-oriented motor imagery for grasping action: Different characteristics of brain activation between kinesthetic and visual imagery. Scientific Reports, 9(1), 12770. https://doi.org/10.1038/s41598-019-49254-2
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. British Medical Journal, 339, b2700. https://doi.org/10.1136/bmj.b2700
Lindsay, R. S., Larkin, P., Kittel, A., & Spittle, M. (2021). Mental imagery training programs for developing sport-specific motor skills: A systematic review and meta-analysis. Physical Education and Sport Pedagogy, 28(4), 444-465. https://doi.org/10.1080/17408989.2021.1991297
Macuga, K. L., & Frey, S. H. (2012). Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. NeuroImage, 59(3), 2798-2807. https://doi.org/10.1016/j.neuroimage.2011.09.083
Matsuo, M., Iso, N., Fujiwara, K., Moriuchi, T., Matsuda, D., Mitsunaga, W., Nakashima, A., & Higashi, T. (2020). Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity. Neural Regeneration Research, 16(4), 778. https://doi.org/10.4103/1673-5374.295333
Mulder, T., Zijlstra, S., Zijlstra, W., & Hochstenbach, J. (2004). The role of motor imagery in learning a totally novel movement. Experimental Brain Research, 154(2), Article 2. https://doi.org/10.1007/s00221-003-1647-6
Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), Article 2. https://doi.org/10.1016/j.brainresrev.2008.12.024
Nakano, H. (2012). Brain activity during the observation, imagery, and execution of tool use: An fNIRS/EEG study. Journal of Novel Physiotherapies, 01(S1). https://doi.org/10.4172/2165-7025.S1-009
Neuper, C., Scherer, R., Reiner, M., & Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cognitive Brain Research, 25(3), 668-677. https://doi.org/10.1016/j.cogbrainres.2005.08.014
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., & Moher, D. (2021). Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. Journal of Clinical Epidemiology, 134, 103-112. https://doi.org/10.1016/j.jclinepi.2021.02.003
Ruffino, C., Papaxanthis, C., & Lebon, F. (2017). Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience, 341, 61-78. https://doi.org/10.1016/j.neuroscience.2016.11.023
Ruffino, C., Truong, C., Dupont, W., Bouguila, F., Michel, C., Lebon, F., & Papaxanthis, C. (2021). Acquisition and consolidation processes following motor imagery practice. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-81994-y
Sedgwick, P., & Marston, L. (2015). How to read a funnel plot in a meta-analysis. British Medical Journal (Clinical research ed.), 351, h4718. https://doi.org/10.1136/bmj.h4718
Sharif, M. R., Hemayattalab, R., Sayyah, M., Hemayattalab, A., & Bazazan, S. (2015). Effects of physical and mental practice on motor learning in individuals with cerebral palsy. Journal of Developmental and Physical Disabilities, 27(4), Article 4. https://doi.org/10.1007/s10882-015-9432-6
Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annual Review of Psychology, 70(1), 747-770. https://doi.org/10.1146/annurev-psych-010418-102803
Simonsmeier, B. A., Andronie, M., Buecker, S., & Frank, C. (2021). The effects of imagery interventions in sports: A meta-analysis. International Review of Sport and Exercise Psychology, 14(1), 186-207. https://doi.org/10.1080/1750984X.2020.1780627
Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H.-Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., … Higgins, J. P. T. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, l4898. https://doi.org/10.1136/bmj.l4898
Stumbrys, T., Erlacher, D., & Schredl, M. (2016). Effectiveness of motor practice in lucid dreams: A comparison with physical and mental practice. Journal of Sports Sciences, 34(1), Article 1. https://doi.org/10.1080/02640414.2015.1030342
Taktek, K., Zinsser, N., & St-John, B. (2008). Visual versus kinesthetic mental imagery: Efficacy for the retention and transfer of a closed motor skill in young children. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 62(3), Article 3. https://doi.org/10.1037/1196-1961.62.3.174
Truong, C., Hilt, P. M., Bouguila, F., Bove, M., Lebon, F., Papaxanthis, C., & Ruffino, C. (2022). Time-of-day effects on skill acquisition and consolidation after physical and mental practices. Scientific Reports, 12(1), 1-9. Academic Search Ultimate.
Vasilyev, A. N., Nuzhdin, Y. O., & Kaplan, A. Y. (2021). Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice? Brain Sciences, 11(9), 1234. https://doi.org/10.3390/brainsci11091234
Wang, X., Casadio, M., Weber, K. A., Mussa-Ivaldi, F. A., & Parrish, T. B. (2014). White matter microstructure changes induced by motor skill learning utilizing a body machine interface. NeuroImage, 88, 32-40. Scopus. https://doi.org/10.1016/j.neuroimage.2013.10.066
Wriessnegger, S., Kurzmann, J., & Neuper, C. (2008). Spatio-temporal differences in brain oxygenation between movement execution and imagery: A multichannel near-infrared spectroscopy study. International Journal of Psychophysiology, 67(1), 54-63. https://doi.org/10.1016/j.ijpsycho.2007.10.004
Zich, C., Debener, S., Thoene, A.-K., Chen, L.-C., & Kranczioch, C. (2017). Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures. Neurobiology of Aging, 49, 183-197. https://doi.org/10.1016/j.neurobiolaging.2016.10.011